On the linear structure and clique-width of bipartite permutation graphs
نویسندگان
چکیده
Bipartite permutation graphs have several nice characterizations in terms of vertex ordering. Besides, as AT-free graphs, they have a linear structure in the sense that any connected bipartite permutation graph has a dominating path. In the present paper, we elaborate the linear structure of bipartite permutation graphs by showing that any connected graph in the class can be stretched into a "path" with "edges" being chain graphs. A particular consequence from the obtained characterization is that the clique-width of bipartite permutation graphs is unbounded, which reenes a recent result of Golumbic and Rotics for permutation graphs.
منابع مشابه
Upper Bounds on Boolean-Width with Applications to Exact Algorithms
Boolean-width is similar to clique-width, rank-width and NLC-width in that all these graph parameters are constantly bounded on the same classes of graphs. In many classes where these parameters are not constantly bounded, boolean-width is distinguished by its much lower value, such as in permutation graphs and interval graphs where boolean-width was shown to be O(logn) [1]. Together with FPT a...
متن کاملOn the Clique-Width of Perfect Graph Classes
Graphs of clique–width at most k were introduced by Courcelle, Engelfriet and Rozenberg (1993) as graphs which can be defined by k-expressions based on graph operations which use k vertex labels. In this paper we study the clique–width of perfect graph classes. On one hand, we show that every distance–hereditary graph, has clique– width at most 3, and a 3–expression defining it can be obtained ...
متن کاملChordal bipartite graphs of bounded tree- and clique-width
A bipartite graph is chordal bipartite if every cycle of length at least six has a chord. In the class of chordal bipartite graphs the tree-width and the clique-width are unbounded. Our main results are that chordal bipartite graphs of bounded vertex degree have bounded tree-width and that k-fork-free chordal bipartite graphs have bounded clique-width, where a k-fork is the graph arising from a...
متن کاملLinear Clique-width for Subclasses of Cographs, with Connections to Permutations
We prove that a hereditary property of cographs has bounded linear cliquewidth if and only if it does not contain all quasi-threshold graphs or their complements. The proof borrows ideas from the enumeration of permutation classes, and the similarities between these two strands of investigation lead us to a conjecture relating the graph properties of bounded linear clique-width to permutation c...
متن کاملThe Clique-Width of Bipartite Graphs in Monogenic Classes
In this paper, we provide complete classification of classes of bipartite graphs defined by a single forbidden induced bipartite subgraph with respect to bounded/unbounded clique-width.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 67 شماره
صفحات -
تاریخ انتشار 2003